Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.059
Filtrar
1.
Mol Biol Cell ; 35(5): ar62, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507240

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) accessory protein Orf6 works as an interferon antagonist, in part, by inhibiting the nuclear import activated p-STAT1, an activator of interferon-stimulated genes, and the export of the poly(A) RNA. Insight into the transport regulatory function of Orf6 has come from the observation that Orf6 binds to the nuclear pore complex (NPC) components: Rae1 and Nup98. To gain further insight into the mechanism of Orf6-mediated transport inhibition, we examined the role of Rae1 and Nup98. We show that Rae1 alone is not necessary to support p-STAT1 import or nuclear export of poly(A) RNA. Moreover, the loss of Rae1 suppresses the transport inhibitory activity of Orf6. We propose that the Rae1/Nup98 complex strategically positions Orf6 within the NPC where it alters FG-Nup interactions and their ability to support nuclear transport. In addition, we show that Rae1 is required for normal viral protein production during SARS-CoV-2 infection presumably through its role in supporting Orf6 function.


Assuntos
Transporte Ativo do Núcleo Celular , COVID-19 , Poro Nuclear , Proteínas de Transporte Nucleocitoplasmático , SARS-CoV-2 , Humanos , COVID-19/metabolismo , Interferons/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , SARS-CoV-2/metabolismo , Proteínas Virais/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo
2.
FEBS Lett ; 598(4): 415-436, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38320753

RESUMO

Matrin-3 (MATR3) is an RNA-binding protein implicated in neurodegenerative and neurodevelopmental diseases. However, little is known regarding the role of MATR3 in cryptic splicing within the context of functional genes and how disease-associated variants impact this function. We show that loss of MATR3 leads to cryptic exon inclusion in many transcripts. We reveal that ALS-linked S85C pathogenic variant reduces MATR3 solubility but does not impair RNA binding. In parallel, we report a novel neurodevelopmental disease-associated M548T variant, located in the RRM2 domain, which reduces protein solubility and impairs RNA binding and cryptic splicing repression functions of MATR3. Altogether, our research identifies cryptic events within functional genes and demonstrates how disease-associated variants impact MATR3 cryptic splicing repression function.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/genética , Éxons/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA , Proteínas Associadas à Matriz Nuclear/genética
3.
Arch Biochem Biophys ; 754: 109896, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417691

RESUMO

AIMS: The purpose of this study was to explore the role of RAE1 in the invasion and metastasis of gastric cancer (GC) cells. MATERIALS AND METHODS: RAE1 expression in GC cells was determined by reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB). Cell models featuring RAE1 gene silencing and overexpression were constructed by lentiviral transfection; The proliferation, migration, and invasion ability of cells were detected by cell counting, colony formation assay, would healing assay, and transwell invasion and migration test. WB analysis of ERK/MAPK signaling pathway (ERK1/2, p-ERK1/2, c-Myc) and EMT-related molecules (ZEB1, E-cadherin, N-cadherin, and Vimentin). RESULTS: The expression level of RAE1 in GC was notably higher than in adjacent tissues. Elevated RAE1 expression correlated with an unfavorable prognosis for GC patients. Knockdown of RAE1, as compared to the control group, resulted in a significant inhibition of proliferation, migration, and invasion abilities in GC cell lines. Furthermore, RAE1 knockdown led to a substantial decrease in the expression of N-cadherin, vimentin, ZEB1, p-ERK1/2, and c-Myc proteins, coupled with a marked increase in E-cadherin expression. The biological effects of RAE1 in GC cells were effectively reversed by the inhibition of the ERK/MAPK signaling pathway using SCH772984. Additionally, RAE1 knockdown demonstrated a suppressive effect on GC tumor size in vivo. Immunohistochemistry (IHC) results revealed significantly lower expression of Ki-67 in RAE1 knockout mice compared to the control group. CONCLUSIONS: RAE1 promotes GC cell migration and invasion through the ERK/MAPK pathway and is a potential therapeutic target for GC therapy.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Gástricas , Animais , Humanos , Camundongos , Caderinas/genética , Caderinas/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/genética , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Vimentina/genética , Vimentina/metabolismo
4.
Nat Commun ; 15(1): 1274, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341433

RESUMO

Although emerging evidence indicates that alterations in proteins within nuclear compartments elicit changes in chromosomal architecture and differentiation, the underlying mechanisms are not well understood. Here we investigate the direct role of the abundant nuclear complex protein Matrin3 (Matr3) in chromatin architecture and development in the context of myogenesis. Using an acute targeted protein degradation platform (dTAG-Matr3), we reveal the dynamics of development-related chromatin reorganization. High-throughput chromosome conformation capture (Hi-C) experiments revealed substantial chromatin loop rearrangements soon after Matr3 depletion. Notably, YY1 binding was detected, accompanied by the emergence of novel YY1-mediated enhancer-promoter loops, which occurred concurrently with changes in histone modifications and chromatin-level binding patterns. Changes in chromatin occupancy by Matr3 also correlated with these alterations. Overall, our results suggest that Matr3 mediates differentiation through stabilizing chromatin accessibility and chromatin loop-domain interactions, and highlight a conserved and direct role for Matr3 in maintenance of chromosomal architecture.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Proteínas Associadas à Matriz Nuclear , Proteínas de Ligação a RNA , Núcleo Celular , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromossomos , Regiões Promotoras Genéticas/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo
5.
Cell Cycle ; 23(1): 15-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38252499

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. The oncogenic role of Matrin-3 (MATR3), an a nuclear matrix protein, in HCC remains largely unknown. Here, we document the biological function of MATR3 in HCC based on integrated bioinformatics analysis and functional studies. According to the TCGA database, MATR3 expression was found to be positively correlated with clinicopathological characteristics in HCC. The receiver operating characteristic (ROC) curve and Kaplan-Meier (KM) curve displayed the diagnostic and prognostic potentials of MATR3 in HCC patients, respectively. Pathway enrichment analysis represented the enrichment of MATR3 in various molecular pathways, including the regulation of the cell cycle. Functional assays in HCC cell lines showed reduced proliferation of cells with stable silencing of MATR3. At the same time, the suppressive effects of MATR3 depletion on HCC development were verified by xenograft tumor experiments. Moreover, MATR3 repression also resulted in cell cycle arrest by modulating the expression of cell cycle-associated genes. In addition, the interaction of MATR3 with cell cycle-regulating factors in HCC cells was further corroborated with co-immunoprecipitation and mass spectrometry (Co-IP/MS). Furthermore, CIBERSORT and TIMER analyses showed an association between MATR3 and immune infiltration in HCC. In general, this study highlights the novel oncogenic function of MATR3 in HCC, which could comprehensively address how aberrant changes in the cell cycle promote HCC development. MATR3 might serve as a prognostic predictor and therapeutic target for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Ciclo Celular/genética , Divisão Celular , Biomarcadores , Proteínas de Ligação a RNA , Proteínas Associadas à Matriz Nuclear/genética
6.
Ann Clin Transl Neurol ; 11(4): 938-945, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287512

RESUMO

OBJECTIVE: Multisystem proteinopathy (MSP) is an inherited disorder in which protein aggregates with TAR DNA-binding protein of 43 kDa form in multiple organs. Mutations in VCP, HNRNPA2B1, HNRNPA1, SQSTM1, MATR3, and ANXA11 are causative for MSP. This study aimed to conduct a nationwide epidemiological survey based on the diagnostic criteria established by the Japan MSP study group. METHODS: We conducted a nationwide epidemiological survey by administering primary and secondary questionnaires among 6235 specialists of the Japanese Society of Neurology. RESULTS: In the primary survey, 47 patients with MSP were identified. In the secondary survey of 27 patients, inclusion body myopathy was the most common initial symptom (74.1%), followed by motor neuron disease (11.1%), frontotemporal dementia (FTD, 7.4%), and Paget's disease of bone (PDB, 7.4%), with no cases of parkinsonism. Inclusion body myopathy occurred most frequently during the entire course of the disease (81.5%), followed by motor neuron disease (25.9%), PDB (18.5%), FTD (14.8%), and parkinsonism (3.7%). Laboratory findings showed a high frequency of elevated serum creatine kinase levels and abnormalities on needle electromyography, muscle histology, brain magnetic resonance imaging, and perfusion single-photon emission computed tomography. INTERPRETATION: The low frequency of FTD and PDB may suggest that FTD and PDB may be widely underdiagnosed and undertreated in clinical practice.


Assuntos
Demência Frontotemporal , Doença dos Neurônios Motores , Doenças Musculares , Transtornos Parkinsonianos , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Japão/epidemiologia , Proteína com Valosina/genética , Proteínas de Ligação a RNA , Proteínas Associadas à Matriz Nuclear
7.
Transplantation ; 108(3): e23-e35, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37817309

RESUMO

BACKGROUND: Acute graft-versus-host disease (aGVHD) mediated by alloreactive T cells remains a serious and life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT). The contribution of the different CD4 + T helper cell subtypes to the pathogenesis and regulation of aGVHD is a central point in current research. The specialized effector subsets of T cells that differentiate from naive T cells into mature cells are closely related to scaffold/matrix-associated region-1-binding protein (SMAR1). However, the role of SMAR1 in aGVHD is unclear. METHODS: Peripheral blood was collected from the patients with or without aGVHD after allo-HCT. The differences in CD4 + T cells transduced with the SMAR1 lentivirus vector and empty vector were analyzed. A humanized aGVHD mouse model was constructed to evaluate the function of SMAR1 in aGVHD. RESULTS: The expression of SMAR1 was significantly reduced in the CD4 + T cells from aGVHD patients and related to the occurrence of aGVHD. SMAR1 overexpression in human CD4 + T cells regulated CD4 + T-cell subsets differentiation and inflammatory cytokines secretion and inhibited the Janus kinase/signal transducer and activator of transcription pathway. Moreover, SMAR1 changed chromatin accessibility landscapes and affected the binding motifs of key transcription factors regulating T cells. Additionally, upregulation of SMAR1 expression in CD4 + T cells improved the survival and pathology in a humanized aGVHD mouse model. CONCLUSIONS: Our results showed that upregulation of SMAR1 regulated the CD4 + T-cell subpopulation and cytokines secretion and improved survival in a humanized aGVHD mouse model by alleviating inflammation. This study provides a promising therapeutic target for aGVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Humanos , Proteínas Associadas à Matriz Nuclear , Linfócitos T CD4-Positivos/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Doença Enxerto-Hospedeiro/metabolismo , Citocinas , Janus Quinases , Doença Aguda
8.
In Vivo ; 38(1): 190-195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38148062

RESUMO

BACKGROUND/AIM: Nuclear matrix protein-22 (NMP-22) is widely used in human medicine as a prognostic and diagnostic tool for urothelial carcinoma (UC). In addition, the use of urinary exosomes as a liquid biopsy tool is emerging for the diagnosis of certain types of cancer in human medicine. This study aimed to investigate the change in urinary exosomal NMP-22 for the diagnosis of UC in dogs. PATIENTS AND METHODS: Among canine patients who visited the veterinary hospital, urine was collected from those whose owners provided consent. A total of 23 dogs (UC group, n=6; control group, n=17) were included in the analysis. After exosomes were isolated from the urine, NMP-22 was measured using enzyme-linked immunosorbent assay. RESULTS: In the UC group, the expression of NMP-22 in urinary exosomes was significantly higher than that in non-UC groups (p<0.0001). CONCLUSION: NMP-22 is significantly increased in exosomes in the urine of dogs diagnosed with UC, suggesting that urinary exosome NMP-22 can be considered as one of the liquid biopsy tools for diagnosing UC in dogs.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Cães , Animais , Neoplasias da Bexiga Urinária/patologia , Carcinoma de Células de Transição/diagnóstico , Carcinoma de Células de Transição/veterinária , Carcinoma de Células de Transição/patologia , Projetos Piloto , Biomarcadores Tumorais/urina , Proteínas Associadas à Matriz Nuclear
9.
Acta Histochem ; 125(8): 152101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913560

RESUMO

Pterygium is a common eye surface disease with high recurrence and unclear pathogenesis. In current study, RNA sequencing was conducted in 6 pairs of human pterygium and conjunctival tissues, and Matr3 as a novel candidate gene was significantly reduced in pterygium compared to control tissues. Moreover, immunoprecipitation was performed to pull down MATR3, and WTAP specially interacting with MATR3 in control but not pterygium was identified by mass spectrum. Immunoprecipitation was performed to validate the interaction between MATR3 and WTAP/METTL3/METTL14 complex. (Methylated) RNA immunoprecipitation was performed to further reveal that the binding affinity of WTAP and MATR3 was lost at 3' UTR of RNA molecules of down-regulated genes in pterygium. Overall, we figured out the loss of intercrossing between MATR3 and N6-methyladenosine methyltransferase complex, as well as indicated the potential impact on transcription of target genes in pterygium.


Assuntos
Pterígio , Humanos , Metilação , Pterígio/genética , RNA , Túnica Conjuntiva/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo
10.
J Transl Med ; 21(1): 856, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012642

RESUMO

BACKGROUND: Radiosensitivity of rectal cancer is related to the radiotherapy efficacy and prognosis of patients with rectal cancer, and the genes and molecular mechanisms related to radiosensitivity of rectal cancer have not been clarified. We explored the radiosensitivity related genes of rectal cancer at a multi omics level. METHODS: mRNA expression data and rectum adenocarcinoma (READ) data were obtained from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus Database (GEO) (GSE150082, GSE60331, GSE46862, GSE46862). Differentially expressed genes between radiotherapy sensitive group and radiotherapy insensitive group were screened. GO analysis and KEGG pathway analysis were performed for differentially expressed genes. Among the differentially expressed genes, five core genes associated with rectal cancer prognosis were selected using random survival forest analysis. For these five core genes, drug sensitivity analysis, immune cell infiltration analysis, TISIDB database immune gene correlation analysis, GSEA enrichment analysis, construction of Nomogram prediction model, transcriptional regulatory network analysis, and qRT-PCR validation was performed on human rectal adenocarcinoma tissue. RESULTS: We found that 600 up-regulated genes and 553 down-regulated genes were significantly different between radiotherapy sensitive group and radiotherapy insensitive group in rectal cancer. Five key genes, TOP2A, MATR3, APOL6, JOSD1, and HOXC6, were finally screened by random survival forest analysis. These five key genes were associated with different immune cell infiltration, immune-related genes, and chemosensitivity. A comprehensive transcriptional regulatory network was constructed based on these five core genes. qRT-PCR revealed that MATR3 expression was different in rectal cancer tissues and adjacent non-cancerous tissues, while APOL6, HOXC6, JOSD1, and TOP2A expression was not different. CONCLUSION: Five radiosensitivity-related genes related to the prognosis of rectal cancer: TOP2A, MATR3, APOL6, JOSD1, HOXC6, are involved in multiple processes such as immune cell infiltration, immune-related genes, chemosensitivity, signaling pathways and transcriptional regulatory networks and may be potential biomarkers for radiotherapy of rectal cancer.


Assuntos
Adenocarcinoma , Neoplasias Retais , Humanos , Prognóstico , Multiômica , Neoplasias Retais/genética , Neoplasias Retais/radioterapia , Mapeamento Cromossômico , Proteínas de Ligação a RNA , Proteínas Associadas à Matriz Nuclear
11.
Cell Rep ; 42(9): 113120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37703175

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common neuromuscular disorders and has no cure. Due to an unknown molecular mechanism, FSHD displays overlapping manifestations with the neurodegenerative disease amyotrophic lateral sclerosis (ALS). FSHD is caused by aberrant gain of expression of the transcription factor double homeobox 4 (DUX4), which triggers a pro-apoptotic transcriptional program resulting in inhibition of myogenic differentiation and muscle wasting. Regulation of DUX4 activity is poorly known. We identify Matrin 3 (MATR3), whose mutation causes ALS and dominant distal myopathy, as a cellular factor controlling DUX4 expression and activity. MATR3 binds to the DUX4 DNA-binding domain and blocks DUX4-mediated gene expression, rescuing cell viability and myogenic differentiation of FSHD muscle cells, without affecting healthy muscle cells. Finally, we characterize a shorter MATR3 fragment that is necessary and sufficient to directly block DUX4-induced toxicity to the same extent as the full-length protein. Collectively, our data suggest MATR3 as a candidate for developing a treatment for FSHD.


Assuntos
Proteínas de Homeodomínio , Distrofia Muscular Facioescapuloumeral , Humanos , Esclerose Amiotrófica Lateral/genética , Regulação da Expressão Gênica , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Doenças Neurodegenerativas/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Ligação a RNA/metabolismo
12.
Proc Natl Acad Sci U S A ; 120(39): e2305756120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722062

RESUMO

Mutations in RNA/DNA-binding proteins cause amyotrophic lateral sclerosis (ALS), but the underlying disease mechanisms remain unclear. Here, we report that a set of ALS-associated proteins, namely FUS, EWSR1, TAF15, and MATR3, impact the expression of genes encoding the major histocompatibility complex II (MHC II) antigen presentation pathway. Both subunits of the MHC II heterodimer, HLA-DR, are down-regulated in ALS gene knockouts/knockdown in HeLa and human microglial cells, due to loss of the MHC II transcription factor CIITA. Importantly, hematopoietic progenitor cells (HPCs) derived from human embryonic stem cells bearing the FUSR495X mutation and HPCs derived from C9ORF72 ALS patient induced pluripotent stem cells also exhibit disrupted MHC II expression. Given that HPCs give rise to numerous immune cells, our data raise the possibility that loss of the MHC II pathway results in global failure of the immune system to protect motor neurons from damage that leads to ALS.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/genética , Apresentação de Antígeno/genética , Genes MHC da Classe II , Complexo Principal de Histocompatibilidade , Neurônios Motores , Proteínas de Ligação a RNA/genética , Proteínas Associadas à Matriz Nuclear
13.
Breast Cancer Res ; 25(1): 109, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770991

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with higher aggressiveness and poorer outcomes. Recently, long non-coding RNAs (lncRNAs) have become the crucial gene regulators in the progression of human cancers. However, the function and underlying mechanisms of lncRNAs in TNBC remains unclear. METHODS: Based on public databases and bioinformatics analyses, the low expression of lncRNA MIDEAS-AS1 in breast cancer tissues was detected and further validated in a cohort of TNBC tissues. The effects of MIDEAS-AS1 on proliferation, migration, invasion were determined by in vitro and in vivo experiments. RNA pull-down assay and RNA immunoprecipitation (RIP) assay were carried out to reveal the interaction between MIDEAS-AS1 and MATR3. Luciferase reporter assay, Chromatin immunoprecipitation (ChIP) and qRT-PCR were used to evaluate the regulatory effect of MIDEAS-AS1/MATR3 complex on NCALD. RESULTS: LncRNA MIDEAS-AS1 was significantly downregulated in TNBC, which was correlated with poor overall survival (OS) and progression-free survival (PFS) in TNBC patients. MIDEAS-AS1 overexpression remarkably inhibited tumor growth and metastasis in vitro and in vivo. Mechanistically, MIDEAS-AS1 mainly located in the nucleus and interacted with the nuclear protein MATR3. Meanwhile, NCALD was selected as the downstream target, which was transcriptionally regulated by MIDEAS-AS1/MATR3 complex and further inactivated NF-κB signaling pathway. Furthermore, rescue experiment showed that the suppression of cell malignant phenotype caused by MIDEAS-AS1 overexpression could be reversed by inhibition of NCALD. CONCLUSIONS: Collectively, our results demonstrate that MIDEAS-AS1 serves as a tumor-suppressor in TNBC through modulating MATR3/NCALD axis, and MIDEAS-AS1 may function as a prognostic biomarker for TNBC.


Assuntos
MicroRNAs , Neurocalcina , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neurocalcina/genética , Neurocalcina/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
14.
J Exp Bot ; 74(18): 5500-5513, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37503569

RESUMO

The nuclear lamina in plant cells is composed of plant-specific proteins, including nuclear matrix constituent proteins (NMCPs), which have been postulated to be functional analogs of lamin proteins that provide structural integrity to the organelle and help stabilize the three-dimensional organization of the genome. Using genomic editing, we generated alleles for the three genes encoding NMCPs in cultivated tomato (Solanum lycopersicum) to determine if the consequences of perturbing the nuclear lamina in this crop species were similar to or distinct from those observed in the model Arabidopsis thaliana. Loss of the sole NMCP2-class protein was lethal in tomato but is tolerated in Arabidopsis. Moreover, depletion of NMCP1-type nuclear lamina proteins leads to distinct developmental phenotypes in tomato, including leaf morphology defects and reduced root growth rate (in nmcp1b mutants), compared with cognate mutants in Arabidopsis. These findings suggest that the nuclear lamina interfaces with different developmental and signaling pathways in tomato compared with Arabidopsis. At the subcellular level, however, tomato nmcp mutants resembled their Arabidopsis counterparts in displaying smaller and more spherical nuclei in differentiated cells. This result argues that the plant nuclear lamina facilitates nuclear shape distortion in response to forces exerted on the organelle within the cell.


Assuntos
Arabidopsis , Solanum lycopersicum , Lâmina Nuclear/metabolismo , Solanum lycopersicum/genética , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo
15.
Biol Open ; 12(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37283223

RESUMO

The Polycomb Repressive Complex 2 (PRC2) is a conserved enzyme that tri-methylates Lysine 27 on Histone 3 (H3K27me3) to promote gene silencing. PRC2 is remarkably responsive to the expression of certain long noncoding RNAs (lncRNAs). In the most notable example, PRC2 is recruited to the X-chromosome shortly after expression of the lncRNA Xist begins during X-chromosome inactivation. However, the mechanisms by which lncRNAs recruit PRC2 to chromatin are not yet clear. We report that a broadly used rabbit monoclonal antibody raised against human EZH2, a catalytic subunit of PRC2, cross-reacts with an RNA-binding protein called Scaffold Attachment Factor B (SAFB) in mouse embryonic stem cells (ESCs) under buffer conditions that are commonly used for chromatin immunoprecipitation (ChIP). Knockout of EZH2 in ESCs demonstrated that the antibody is specific for EZH2 by western blot (no cross-reactivity). Likewise, comparison to previously published datasets confirmed that the antibody recovers PRC2-bound sites by ChIP-Seq. However, RNA-IP from formaldehyde-crosslinked ESCs using ChIP wash conditions recovers distinct peaks of RNA association that co-localize with peaks of SAFB and whose enrichment disappears upon knockout of SAFB but not EZH2. IP and mass spectrometry-based proteomics in wild-type and EZH2 knockout ESCs confirm that the EZH2 antibody recovers SAFB in an EZH2-independent manner. Our data highlight the importance of orthogonal assays when studying interactions between chromatin-modifying enzymes and RNA.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , RNA Longo não Codificante , Humanos , Animais , Camundongos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , RNA Longo não Codificante/genética , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Camundongos Knockout , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Cromatina , Proteínas de Ligação a RNA/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo
16.
EMBO Rep ; 24(8): e57550, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37381832

RESUMO

Long interspersed nuclear elements (LINEs) play essential roles in shaping chromatin states, while the factors that cooperate with LINEs and their roles in higher-order chromatin organization remain poorly understood. Here, we show that MATR3, a nuclear matrix protein, interplays with antisense LINE1 (AS L1) RNAs to form a meshwork via phase separation, providing a dynamic platform for chromatin spatial organization. MATR3 and AS L1 RNAs affect the nuclear localization of each other. After MATR3 depletion, the chromatin, particularly H3K27me3-modified chromatin, redistributes in the cell nuclei. Topologically associating domains (TADs) that highly transcribe MATR3-associated AS L1 RNAs show decreased intra-TAD interactions in both AML12 and ES cells. MATR3 depletion increases the accessibility of H3K27me3 domains adjacent to MATR3-associated AS L1, without affecting H3K27me3 modifications. Furthermore, amyotrophic lateral sclerosis (ALS)-associated MATR3 mutants alter biophysical features of the MATR3-AS L1 RNA meshwork and cause an abnormal H3K27me3 staining. Collectively, we reveal a role of the meshwork formed by MATR3 and AS L1 RNAs in gathering chromatin in the nucleus.


Assuntos
Esclerose Amiotrófica Lateral , RNA Antissenso , Humanos , Histonas/genética , Esclerose Amiotrófica Lateral/genética , Cromatina/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo
17.
Commun Biol ; 6(1): 664, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353594

RESUMO

Self-renewing somatic tissues rely on progenitors to support the continuous tissue regeneration. The gene regulatory network maintaining progenitor function remains incompletely understood. Here we show that NUP98 and RAE1 are highly expressed in epidermal progenitors, forming a separate complex in the nucleoplasm. Reduction of NUP98 or RAE1 abolishes progenitors' regenerative capacity, inhibiting proliferation and inducing premature terminal differentiation. Mechanistically, NUP98 binds on chromatin near the transcription start sites of key epigenetic regulators (such as DNMT1, UHRF1 and EZH2) and sustains their expression in progenitors. NUP98's chromatin binding sites are co-occupied by HDAC1. HDAC inhibition diminishes NUP98's chromatin binding and dysregulates NUP98 and RAE1's target gene expression. Interestingly, HDAC inhibition further induces NUP98 and RAE1 to localize interdependently to the nucleolus. These findings identified a pathway in progenitor maintenance, where HDAC activity directs the high levels of NUP98 and RAE1 to directly control key epigenetic regulators, escaping from nucleolar aggregation.


Assuntos
Cromatina , Proteínas de Transporte Nucleocitoplasmático , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Cromatina/genética , Proteínas Associadas à Matriz Nuclear/química , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Sítios de Ligação
19.
Proc Natl Acad Sci U S A ; 120(15): e2206217120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011198

RESUMO

RNA-binding protein (RBP) dysfunction is a fundamental hallmark of amyotrophic lateral sclerosis (ALS) and related neuromuscular disorders. Abnormal neuronal excitability is also a conserved feature in ALS patients and disease models, yet little is known about how activity-dependent processes regulate RBP levels and functions. Mutations in the gene encoding the RBP Matrin 3 (MATR3) cause familial disease, and MATR3 pathology has also been observed in sporadic ALS, suggesting a key role for MATR3 in disease pathogenesis. Here, we show that glutamatergic activity drives MATR3 degradation through an NMDA receptor-, Ca2+-, and calpain-dependent mechanism. The most common pathogenic MATR3 mutation renders it resistant to calpain degradation, suggesting a link between activity-dependent MATR3 regulation and disease. We also demonstrate that Ca2+ regulates MATR3 through a nondegradative process involving the binding of Ca2+/calmodulin to MATR3 and inhibition of its RNA-binding ability. These findings indicate that neuronal activity impacts both the abundance and function of MATR3, underscoring the effect of activity on RBPs and providing a foundation for further study of Ca2+-coupled regulation of RBPs implicated in ALS and related neurological diseases.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/metabolismo , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Calpaína/genética , Calpaína/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo
20.
BMC Genomics ; 24(1): 216, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098514

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a life-threatening and debilitating mental health condition. Mitophagy, a form of selective autophagy that eliminates dysfunctional mitochondria, is associated with depression. However, studies on the relationship between mitophagy-related genes (MRGs) and MDD are scarce. This study aimed to identify potential mitophagy-related biomarkers for MDD and characterize the underlying molecular mechanisms. METHODS: The gene expression profiles of 144 MDD samples and 72 normal controls were retrieved from the Gene Expression Omnibus database, and the MRGs were extracted from the GeneCards database. Consensus clustering was used to determine MDD clusters. Immune cell infiltration was evaluated using CIBERSORT. Functional enrichment analyses were performed to determine the biological significance of mitophagy-related differentially expressed genes (MR-DEGs). Weighted gene co-expression network analysis, along with a network of protein-protein interactions (PPI), was used to identify key modules and hub genes. Based on the least absolute shrinkage and selection operator analysis and univariate Cox regression analysis, a diagnostic model was constructed and evaluated using receiver operating characteristic curves and validated with training data and external validation data. We reclassified MDD into two molecular subtypes according to biomarkers and evaluated their expression levels. RESULTS: In total, 315 MDD-related MR-DEGs were identified. Functional enrichment analyses revealed that MR-DEGs were mainly enriched in mitophagy-related biological processes and multiple neurodegenerative disease pathways. Two distinct clusters with diverse immune infiltration characteristics were identified in the 144 MDD samples. MATR3, ACTL6A, FUS, BIRC2, and RIPK1 have been identified as potential biomarkers of MDD. All biomarkers showed varying degrees of correlation with immune cells. In addition, two molecular subtypes with distinct mitophagy gene signatures were identified. CONCLUSIONS: We identified a novel five-MRG gene signature that has excellent diagnostic performance and identified an association between MRGs and the immune microenvironment in MDD.


Assuntos
Transtorno Depressivo Maior , Doenças Neurodegenerativas , Humanos , Transtorno Depressivo Maior/genética , Mitofagia/genética , Biomarcadores , Análise por Conglomerados , Actinas , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA , Proteínas de Ligação a RNA , Proteínas Associadas à Matriz Nuclear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...